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Statistical substantiation of the van der Waals theory of inhomogeneous fluids

V. G. Baidakov,* S. P. Protsenko, G. G. Chernykh, and G. Sh. Boltachev
Institute of Thermal Physics, Urals Branch of the Russian Academy of Sciences, Ekaterinburg GSP-828, Russia
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Computer experiments on simulation of thermodynamic properties and structural characteristics of a
Lennard-Jones fluid in one- and two-phase models have been performed for the purpose of checking the base
concepts of the van der Waals theory. Calculations have been performed by the method of molecular dynamics
at cutoff radii of the intermolecular potentialr c,152.6s and r c,256.78s. The phase equilibrium parameters,
surface tension, and density distribution have been determined in a two-phase model with a flat liquid-vapor
interface. The strong dependence of these properties on the value ofr c is shown. Thep,r,T properties and
correlation functions have been calculated in a homogeneous model for a stable and a metastable fluid. An
equation of state for a Lennard-Jones fluid describing stable, metastable, and labile regions has been built. It is
shown that atT>1.1 the properties of a flat interface within the computer experimental error can be described
by the van der Waals square-gradient theory with an influence parameterk independent of the density. Taking
into account the density dependence ofk through the second moment of the direct correlation function will
deteriorate the agreement of the theory with data of computer simulation. The contribution of terms of a higher
order than (¹r)2 to the Helmholtz free energy of an inhomogeneous system has been considered. It is shown
that taking into account terms proportional to (¹r)4 leaves no way of obtaining agreement between the theory
and simulation data, while taking into consideration of terms proportional to (¹r)6 makes it possible to
describe with adequate accuracy all the properties of a flat interface in the temperature range from the triple to
the critical point.
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I. INTRODUCTION

In recent years the van der Waals theory@1# and its modi-
fications@2,3# have been widely used for describing nuclei
new phases@4,5#, wetting transitions@6#, interfaces in the
vicinity of critical points @2#, and some other surface ph
nomena@3#. Many authors state in their papers a good qu
tative and quantitative agreement between the results
theory and experiment even in regions of state variab
where seemingly the conditions of the theory applicabi
are violated. And although the basic equations of the van
Waals theory can be obtained as some limiting cases of
orous statistical theories, many of its concepts are yet to
statistically substantiated.

The starting point of the van der Waals theory is the p
sentation of the local Helmholtz free energy density of inh
mogeneous fluid as the sum of two terms — the local f
energy density of homogeneous fluid and the term tak
into account the presence of inhomogeneity. It is assum
that in the whole range between the densities of liquid a
vapor existing in equilibrium the Helmholtz free energy de
sity of homogeneous systemf 0(r,T) at a fixed temperature
is an analytic function of the local densityr. The term taking
into account the presence of inhomogeneity imposes the
dition of existence of a certain characteristic length for
fluid medium and in a first approximation is proportional
the square of the density gradient. The coefficient of prop
tionality at the square of the density gradient~influence pa-
rameterk) is a temperature and density function. Thermod
namic stability requiresk.0. Otherwise the formation o
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inhomogeneities would be an energetically profitable proc
as it would result in a decrease of the Helmholtz free ene
The molecular theory of surface tension relates the influe
parameter with the two-body direct correlation functio
c(r ;r,T) of a homogeneous fluid@7#. In this case it is as-
sumed thatc(r ;r,T), as well as the Helmholtz free energ
density f 0(r,T), has been determined in the whole ran
between the densities of coexisting phases, where a hom
neous system can exist only as a metastable or a labile

We shall now highlight the most debatable points of t
van der Waals theory. The van der Waals theory postula
the introduction of local thermodynamic quantities descr
ing a certain hypothetical system, which can exist as a
mogeneous one in the whole range of the state variables
fluid phase. The Helmholtz free energy density and the lo
pressure of such a system at the liquid-vapor interface
density functions at a fixed temperature, should have
form presented in Fig. 1. The densities of phases coexis
in equilibrium are determined by constructing a comm
tangent to the functionf 0(r;T5const) or using the equa
area criterion of Maxwell for pressure. In an actual mac
scopic system the states between pointA and B are meta-
stable and labile. The region of metastable states is sepa
from the region of lability by a spinodal, which is determine
by the following conditions@8#:

S ]p

]r D
T

50, S ]T

]sD
p

50, ~1!

wheres is the entropy.
The conception of homogeneity may be introduced o

with respect to a certain linear sizel. Thus, the molecular
densityr will be homogeneous on the scalel if the volumes
©2002 The American Physical Society01-1
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FIG. 1. Helmholtz free energy density~a! and
pressure~b! in a homogeneous system at a pr
critical (T,Tc) isotherm. A, B are binodal
points andC, D are spinodal points. Dashed line
schematically show states realized in small sy
tems with linear dimensionsl 1 and l 2 ( l 1, l 2).
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l 3 always containr l 3 molecules. The van der Waals theo
makes use of a continual approach, therefore, the boun
from below for the scalel is determined by the inequalityl
@d, whered is the effective molecular size.

In the stable region, the isolated linear scales are the
dius of action of molecular attractive forcesRc and the cor-
relation radiusj. If l @j, on such a linear scale the molecul
system is homogeneous, and the system states are eq
rium and stable. In the metastable region, in addition toRc
andj, there appears a new linear scale, the radius of a c
cal bubble, by which we will understand the radius of t
tension surfaceR* . If the correlation radius characterize
homophase fluctuations, the radiusR* is connected with het-
erophase fluctuations. A system whose linear dimensiol
@j andR* can exist as a homogeneous one only for a li
ited time, whereupon phase separation will take place.
type of functionsf 0(r,T), p(r,T) in this case depends o
the value of l, as is schematically shown in Fig. 1 wit
dashed lines. In the limitl→`, the thermodynamic proper
ties of a system become the same as in the absence o
strictions. In Fig. 1, the lineAB will correspond to the value
l ` .

In a system with a linear dimensionj, l ,R* nucleation
is suppressed, and on the scalel the system retains homoge
neity. As the spinodal is approached,j→` andR* →0. Here
it is impossible to stand out the scale of homogeneity. I
also characteristic of the labile region, where a substa
relaxes into a new phase without activation through the st
of spinodal decay@9#. Thus, in the region of a first-orde
phase transition the condition of homogeneity cannot be
mulated so rigorously as outside it. This means that the fu
tions f 0(r,T), p(r,T) and others cannot be calculated he
without imposing additional conditions on the statistical
tegral.

If we assume that within the limits of the radius of actio
of attractive forces in the vicinity of a molecule there is t
same number of neighboring molecules~mean-field approxi-
mation!, in such a medium all fluctuations on the scalel
5Rc will be suppressed. AtRc→` the condition of homo-
geneity is formulated on a macroscopic scale, which
equivalent to the absence of any characteristic scale at a
this case, the properties of the system are described r
ously by the analytic functionsf 0(r,T), p(r,T) presented in
Fig. 1 @10#.

The next debatable moment of the square-gradient ver
of the van der Waals theory is the fact that the term tak
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account of inhomogeneities usually retains only lower spa
derivatives of density. It is admissible if inhomogeneities a
weak. As a critical point is approached the interfacial reg
broadens and the density gradients at the interface decre
Therefore, in a critical region neglect of derivatives of
higher order than the first ones is justified.A priori, this is
not evident in the vicinity of a triple point, where the densi
gradient at the interface is large.

In the general case, the influence parameter~coefficient of
proportionality at the square of the density gradient! is a
function of the density and temperature and is determi
through the second moment of the direct correlation fu
tion. Calculation ofk(r,T) through the direct correlation
function of a homogeneous system is connected with a n
ber of fundamental difficulties as the latter, strictly speakin
cannot be determined behind the spinodal, in the labile
gion.

In the simplest versions of the van der Waals theory
influence parameterk is a constant determined only by in
termolecular forces. In more rigorous modifications of t
theoryk depends onT and does not depend onr. This case
is the most interesting one as at given values of the He
holtz free energy densityf 0(r,T) and the planar surface ten
sion one makes it possible to determine the value ofk and
calculate the interfacial density distribution. As is shown
Ref. @11#, such an approach gives for argon values of
effective thickness of the interface that are in satisfact
agreement with data obtained by ellipsometric study. B
sides, this approach makes it possible to determine the
pendence of the surface tension of new-phase nuclei on
size @5,12#. Taking into account this dependence in the cla
sical homogeneous nucleation theory improves the ag
ment between theory and experiment in superheated sim
liquids @5,13#. Nevertheless, such a check of the van d
Waals theory is only indirect. Experiments based on mea
ing the interface reflectance with scattering of light, x-ra
and neutrons give information only about the effective thic
ness of the interface, and not about the interfacial den
distribution. Experiments on nucleation also give indirect
formation about the surface tension of nuclei as to meas
its value for bubbles~droplets! of radius 10–100 nm directly
by experiment seems to be impossible.

In this paper, the van der Waals theory is checked o
model system of Lennard-Jones particles. The method
molecular dynamics is used in a two-phase system with a
liquid-vapor interface to calculate the parameters of ph
1-2
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STATISTICAL SUBSTANTIATION OF THE VAN DER . . . PHYSICAL REVIEW E65 041601
equilibrium, surface tension, interfacial density distributi
in the temperature range from the triple point to temperat
close to critical one. To determine the Helmholtz free ene
density and the direct correlation function for a homog
neous fluid use is made of a one-phase molecular-dyna
model. The temperature dependence of the influence pa
eter is found in the framework of the van der Waals the
from data on the surface tension, the effective thickness
the interface, and the Helmholtz free energy density. T
dependence ofk on r and T is also determined by direc
calculation of correlation functions in computer experimen

The paper consists of five sections. Section II formula
the basic ideas of the van der Waals theory. Section III
scribes the results of calculating the properties of two ph
and one-phase molecular systems by the method of mol
lar dynamics. Section IV is devoted to analysis of the o
tained data in the framework of the van der Waals theo
Section V contains conclusions and discussions.

II. VAN DER WAALS THEORY

The van der Waals theory assumes that in an inhomo
neous system the Helmholtz free energy density atrW depends
on the local density,r(rW), and its spatial derivatives of vari
ous orders@1#

f $r~rW !%5 f 0~r!1k1~¹r!21k2Dr1k3~¹r!41k4~¹r!2Dr

1k5~Dr!21k6~¹r!~¹Dr!1k7~DDr!1•••.

~2!

Here f 0(r) is the Helmholtz free energy density of a hom
geneous system,k1 , k2 , k3 , . . . are coefficients dependin
in the general case on the temperature and density.

If the inhomogeneities are weak, in expression~2! one can
retain only lower spatial derivatives of density. Then for t
total free energy of an inhomogeneous system we have

F$r~rW !%5E @ f 0~r!1k~¹r!2#drW. ~3!

Here integration is performed through the whole volume o
system, which is assumed to be macroscopic, the influe
parameterk5k12]k2 /]r. Equation~3! is the basic one of
the van der Waals square-gradient theory.

The influence parameterk is related to the direct correla
tion function of a homogeneous fluidc(r ;r,T) by the fol-
lowing relation@7#:

k5
kBT

12 E r 2c~r !drW, ~4!

wherekB is the Boltzmann’s constant. In a mean spheri
approximation

c~r !;2
f~r !

kBT
, ~5!
04160
e
y
-
ic
m-
y
of
e

.
s
-
e
u-
-
y.

e-

a
ce

l

wheref(r ) is the intermolecular potential, and Eq.~4! to-
gether with Eq.~5! gives the well-known Rayleigh–van de
Waals result@2#:

k52
1

12Er .d
r 2f~r !drW. ~6!

Here integration is limited by the region of action of attrac
ing forces,d is the effective diameter of molecules. In a
proximation ~5! the influence parameter proves to be ind
pendent of temperature and density.

This paper investigates properties of a flat liquid-vap
interface. We shall introduce the Cartesian system of coo
nates whosez axis is normal to the interface and directs fro
liquid into vapor. For a grand thermodynamic potential o
two-phase system with allowance for Eq.~3! we have

V$r~z!%5F$r~z!%2mN5AE
2`

` Fv~r!1kS dr

dzD
2Gdz.

~7!

Herev(r)[ f 0(r)2mr, m is the coexistence chemical po
tential, N is the number of particles in the system,A is the
interface area. We shall be interested in distributionsr(z),
which correspond to the boundary conditions,

r~z→2`!5r l , r~z→1`!5rg ,

dr/dz~z→6`!50, ~8!

wherer l , rg are the equilibrium densities of saturated liqu
and vapor phases.

By minimizing the functional~7! we obtain the Euler-
Lagrange equation for calculating the planar interfacial d
sity profile r(z),

d

dzFkS dr

dzD
2G5

dv

dz
. ~9!

Integrating Eq.~9! with allowance for the boundary con
ditions ~8!, we have

dz5F k

v2vs
G1/2

dr, ~10!

wherevs5v(r l)5v(rg)52ps , ps is the saturated-vapo
pressure.

The surface tension may be calculated by any of the
lowing formulas:

s52E
2`

1`

kS dr

dzD
2

dz, ~11!

s52E
rg

r l
@k~v2vs!#

1/2dr. ~12!

Formula~12! is the most important one as in the case ofk
independent ofr it makes it possible to determine the influ
ence parameter by data on the surface tension and the H
holtz free energy density of a homogeneous system~macro-
scopic characteristics!, and then from Eq.~10! to calculate
the interfacial density profile~microscopic characteristic!.
1-3
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The van der Waals theory is a local theory. At every po
of an inhomogeneous system the state of the medium is f
determined by its local properties. The effect of the s
roundings is taken into account only through spatial deri
tives of density. A rigorous theory based on introduction
the density functional gives the following expression for t
Helmholtz free energy of an inhomogeneous system@7#:

F$r~rW !%5E F f 0
I $r~rW !%2

r~rW !

2 E c~rW,rW8!r~rW8!drW8GdrW,

~13!

wheref 0
I (r) is the free energy density of homogeneous flu

in the ideal-gas state,c(rW,rW8;$r%) is a two-body direct cor-
relation function of inhomogeneous fluid, it is a functional
the density distribution in a system. Calculation ofF$r(rW)%
by Eq. ~13! is unrealizable as it requires a knowledge
c(rW,rW8;$r%) or, which is equivalent, direct correlation func
tions of all orders in a homogeneous fluid. To circumvent t
difficulty use is made of approximations that make it po
sible to present the second integral of Eq.~13! as the sum of
two terms determined by a two-body direct correlation fun
tion of a homogeneous system

F$r~rW !%5E f 0$r~rW !%drW1
kBT

4 E E @r~rW8!2r~rW !#2

3c~ urW82rWu; r̄ !drW8drW, ~14!

f 0$r~rW !%5 f 0
I $r~rW !%1

kBT

2
@r~rW !#2E c~ urW82rWu; r̄ !drW8.

~15!

In the formulation of Ebner et al. @14# r̄5@r(rW)
1r(rW8)#/2, andc(urW82rWu; r̄) is interpreted as the direct co
relation function of a hypothetical homogeneous medi
constrained to have uniform densityr̄. The theory of inho-
mogeneous fluid based on Eq.~14! is essentially nonlocal
By expanding the integrand in the second term of Eq.~14!
and restricting ourselves to the first terms of expansion
obtain the equation of the van der Waals theory~3!. Equation
~14! is more rigorous than Eq.~3!. However, the density
functional theory, contrary to the van der Waals theory, gi
no way of expressing the quantities involved only throu
thermodynamic parameters measurable by experiment.

III. MOLECULAR-DYNAMIC SIMULATION

A. Two-phase system

Molecular-dynamic experiments on two-phase mod
were carried out for determining thermodynamic parame
of coexisting phases, surface tension, and interfacial den
profiles. The system under investigation containedN54096
interacting particles. Particles interact through a cut
Lennard-Jones~LJ! potential
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f~r !5H 4«F S s

r D 12

2S s

r D 6G , r<r c ,

0, r .r c ,

~16!

where«51.653 24310221 J, s50.3405 nm are the poten
tial parameters,r c56.78s is the cutoff radius of the inter-
molecular potential. Further use is made of nondimensio
quantities obtained by division of dimensional parametersr ,
r, T, f , k, m, p, by, respectively,s, s23, «/kB , «/s3,
«s5, «, «/s3 and marked with an asterisk.

The system is enclosed in a rectangular box with perio
boundaries. The reduced box sizes areLx* 3Ly* 3Lz*
513.56313.56358. A two-phase system was given in th
form of a two-sided liquid slab with vapor on either side o
it.

The Beeman’s algorithm was used to integrate the eq
tions of particle motion@15#. The integration step in time
was closed equal to 10214 s. The equilibration took no les
than 23105 time steps. The properties of the system we
found by averaging over 23106 time steps in the equili-
brated system.

Density distributionsr(z) were obtained by dividing the
box into 1160 layers 0.05s thick, paralled to the planex,y.
The number of particles in the layers was determined at
ery time step, whereupon time subaverage was perform
Data on the coexisting densities obtained in the range
reduced temperaturesDT* 50.718–1.227 are shown in Fig
2.

The coexistence parameters depended considerably o
value of the cutoff radius of the LJ potentialr c* and to a
lesser degree on the number of particles in the box. T
results of investigating such dependences are presented
in Ref. @17#, where it is shown that the uncertainty of the
modynamic quantities connected with the choice ofr c* does
not exceed the error of their determination ifr c* >6.78.

FIG. 2. Binodal~external curve! and spinodal~internal curve! of
a LJ fluid. 1, data of this paper; 2, Ref.@16#. Solid lines show
calculation by the equation of state~23!, C is the critical point.
1-4
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In the whole investigated temperature range the differe
between the coexisting densities within the limits of statis
cal error of its determination is described by power law
the form

r l* 2rg* ;~Tc* 2T* !b, ~17!

whereb50.32,Tc* 51.285. The critical density obtained b
the law of rectilinear diameters isrc* 50.315.

The surface tension was calculated according to its st
definition

g5
1

2E2`

`

@pN~z!2pT~z!#dz, ~18!

where the factor 1/2 appears due to the presence of two
terfaces in the system. The difference of the normalpN(z)
and the transversepT(z) components of the pressure tens
was determined by the Kirkwood-Buff expression@18#

pN~zn!2pT~zn!5
1

2Vs
K (

i 51

N

(
j 5” i

xi j
2 1yi j

2 22zi j
2

r i j

3f8~r i j !d~zn2zi !L . ~19!

Here ^•••& denotes ensemble average of all pairs of p
ticles, of which at least one (i or j ) is in a layer 0.05s thick
with a numbern (n51, . . . ,1160), Vs is the layer volume.

In Fig. 3, the results of calculating the dependen
g* (T* ) are compared with the results of some other auth
@19–22#. The values ofg, as well as ofp,r,T properties at
the phase equilibrium, essentially depend on the cutoff rad
of the LJ potential.

FIG. 3. Surface tension as a function of the temperature.
figure inset shows the dependence of the surface tension on
value of the cutoff radius of the LJ potential atT* 50.8268. 1, data
of this paper; 2, Ref.@19#; 3, Ref. @20#; 4, Ref. @21#; 5, Ref. @22#.
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The temperature dependence ofg* is well approximated
by the power law

g* ;~Tc* 2T* !m, ~20!

whereTc* 51.314,m51.314. The value of the critical tem
perature proves to be somewhat overestimated with res
to its value determined by data on the coexisting densitie

The values of critical parameters in computer simulat
depend on the kind of the model, the cutoff radius of the
potential, the box size, and some other factors. In the crit
region the effects of the finite size of the box may be tak
into account in the framework of finite-size scaling analys
For a LJ fluid such an approach gives asymptotic (L→`)
values of critical parametersTc* 51.326, rc* 50.316, pc*
50.111@23,24#.

B. One-phase system

To determine the Helmholtz free energy density of a h
mogeneous fluid and the influence parameter by the me
of molecular dynamics thep,r,T properties and the radia
distribution function have been calculated in systems ofN
52048 and 8788 LJ particles. The box containing the p
ticles was cubic. As in the case of a two-phase model,
integrating equations of particles motion use was made of
Beeman’s algorithm@15# with a step in timeDt510214 s.
Calculations were made in a microcanonical ensemble
temperatures close toT* 50.7, 1.0, 1.15. The derivative
(]p/]T)V was determined along with the pressure, tempe
ture, and internal energy. It was used for subsequent pres
correction in a one-phase system to the fixed tempera
values mentioned above.

Calculations were started in a stable liquid or vapor
gion. Transformation into a new state was realized by co
pression~liquid! or expansion~vapor! of a system by means
of scaling of the box boundaries and the coordinates of
the particles from the equilibrium configuration of the prev
ous state. The equilibration of the system at every new d
sity took~5–15)3104 time steps. Thermodynamic and stru
tural characteristics of the system were determined
averaging over~5–30)3105 time steps. Calculations wer
made at two value of the cutoff radius of the LJ potenti
r c1* 52.6 andr c2* 56.78 ~6.58 for isothermT* 50.7). Within
the cutoff radius of the potential the pressure was calcula
by the formula

p5
1

3V K 2(
i 51

N mv i
2

2
2(

i . j
r i j

]f~r i j !

]r i j
L . ~21!

The contribution to the pressure of particles located a
distancer .r c from the isolated one was taken into accou
by introduction of a correctionDpc , which was calculated
under the assumption that there were no correlations betw
particles at distances exceedingr c ,

Dpc* 52
16p

3r c*
3
r* 2, ~22!

e
the
1-5
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thus, the total pressure is the result of summation of E
~21! and ~22!.

Figures 4 and 5 give the results of calculating the press
at isothermsT* 51.0 and 1.15 for the liquid~Fig. 4! and the
gas~Fig. 5! phases in a stable and a metastable states. In
region of stable states and at small supersaturations da
the pressure obtained in models with different numbers
particles and at different values of the cutoff radius of t
potential agree with each other within the limits of statistic
error of calculation. Here one can also observe good ag
ment of our results with data of computer experiments
Hansen and Verlet@25#, Adams@26#, Johnsonet al. @27#. In a
region of high metastability the value of the pressure in
model essentially depends on the number of particles and
cutoff radius of the potential~Figs. 4 and 5!. At r c* 52.6
isotherms of the total pressure have points of minimum~liq-
uid! and maximum~gas! typical for the van der Waals iso
therms. Such a character of dependence ofp on r points to
the retention of the system homogeneity in the density ra
under investigation. An increase ofr c* from 2.6 to 6.78
causes the appearance of nonanalyticity in the depend
p(r), which is connected with phase separation in the s
tem containing a finite number of particles. After the form
tion of a critical nucleus a stable aggregate of a new phas
generated here in the form of a bubble in liquid or a drop
in vapor. In such an inhomogeneous system containin
curved interface the pressures inside and outside the nuc
are different. In the calculations presented here this fac

FIG. 4. Pressure as a function of the density atT* 51.0 and
T* 51.15 for the liquid phase: 1, 4—our data,r c* 52.6,N52048; 2,
5—our data,r c* 56.78,N52048; 3, our data,r c* 56.78,N58788;
6, Ref.@25#; 7, Ref.@26#; 8, Ref.@27#. Solid lines show the equation
of state~23!.
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not taken into account. Calculation by Eq.~21! gives some
effective~averaged! pressure, which is shown in Figs. 4 an
5 with dotted lines. A decrease in density~increase in vol-
ume! in a micro-two-phase system forming during the dec
of a homogeneous liquid results in a growth of the effect
radius of a stable vapor bubble and an increase in the ef
tive pressure in the whole system. And vice versa, cond
sation of the gas phase into a droplet decreases the effe
pressure in a model.

The probability of formation of a new phase critic
nucleus in the same time interval is higher in a system o
larger size than in a small one. Therefore, phase separatio
a system withN58788 particles takes place at lower supe
saturations than in a system withN52048 particles. Besides
in a system withN58788 particles before the appearance
a critical nucleus there are more developed heterophase
tuations, which increase the effective pressure in a liquid
densities close to the point of beginning of phase separa
~Fig. 4!.

Somewhat surprising is the appearance of points
minima ~maxima! on isothermesT* 51.0 and 1.15 in a
model with a cutoff radius of the LJ potentialr c* 52.6. The
van der Waals form of isotherms in this case points to
retention of phase homogeneity in the model at least to
density values to which calculation has been made~Figs. 4
and 5!. Here, however, one should bear in mind the follo
ing circumstance: isotherms with points of minima~liquid!
and maxima~gas! appear when a correction for long-rang
interaction~22! is applied to a pressure calculated in a mod
with a short-range~cutoff! potential~21!. In a model with a
cutoff LJ potential~without corrections! isothermal elasticity
retains a positive value in the whole density range in wh
calculation has been made~Fig. 6!. A different situation is
observed atT* 50.7. Here for the liquid phase at densi
r* 50.71 the pressure in a model with a short-range pot
tial proves to be close to its spinodal value, and a subseq
decrease in density results in the loss of stability of a hom
geneous liquid~Fig. 6!. As in a model with a large cutoff
radius of the potential, the gas phase is isolated in the fo

FIG. 5. Pressure as a function of the density atT* 51.0 and
T* 51.15 for the the gas phase, details same as for Fig. 4.
1-6



es

s
es

m
an
h

n-
o
n
a
s
it

i-
te
is

fa

ion

fs.

d,
ata

o-
f the

we
and

h-
rs

s of

the
on

ge-
cke

o-
n-
. At

sity
s of

re

e

f.

STATISTICAL SUBSTANTIATION OF THE VAN DER . . . PHYSICAL REVIEW E65 041601
of a closed cavity, which leads to increasing effective pr
sure. Thus, pressures obtained with allowance in Eq.~21! for
the correction for long-range interaction by formula~22! and
absence of phase separation may be considered only a
estimation from below for a homogeneous liquid and an
timation from above for a homogeneous gas phase.

C. Equation of state for the homogeneous fluid

A number of empirical equations of state with free para
eters determined by data of the methods of Monte-Carlo
molecular dynamics have been suggested for describing
mogeneous phases of the LJ fluid@27–32#. The authors of
the papers@27–32# used different analytical forms of prese
tation of the equation of state. In a region of liquid-vap
phase transition all equations give a form of the depende
p(r) similar to that of van der Waals. However, numeric
data obtained by these equations in a region of high meta
bility and a labile region are in essential disagreement w
each other~Fig. 7!.

When thep,r,T data of our molecular-dynamic exper
ments are adequately described by the equation of sta
Meckeet al. @32#, the values of the critical parameters of th
equation (Tc* 51.328, rc* 50.3107) differ essentially from
those predicted by our data on phase equilibrium and sur
tension. Besides, ther,T projection of the spinodal liquid
branch calculated by the equation of state from the Ref.@32#

FIG. 6. IsothermsT* 50.7 andT* 51.0 with allowance for the
contribution to the pressure of particles at a distancer c* .2.6 @Eqs.
~21!, ~22!—dark dots# and without its allowance@Eq. ~21!, marked
light dots#: 1, 4—r c* 52.6, N52048; 2, 5—r c* 56.78,N52048; 3,
6—r c* 52.6, N52048. Solid lines show the equation of state~23!.
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has a bend in the temperature rangeT* 51.05–1.28, in con-
nection with which it cannot be approximated by an equat
of the type~17!. Feasibility of an equation of the type~17!
for the density values at the spinodal is shown in the Re
@33,34#.

All this required a new equation of state for the LJ flui
which in a mutually coordinated way would describe the d
of our molecular-dynamic calculations in one-phase and tw
phase models and adequately reproduce the position o
binodal, spinodal, and critical point.

In setting up the equation of state apart from our data
used the results of computer experiments of Johnson
coauthors@27# pertaining to pressuresp* <0.6 and tempera-
tures T* 50.7–6. To ensure the correctness of hig
temperatureT* 57 –35 extensions of isochores and isoba
we included in the array of the processed data the result
the papers by Hansen@35# and Ree@29#. To avoid nonphysi-
cal oscillations on isotherms at low temperatures into
data array to be formed we introduced the density values
the isotherm 0.7 pertaining to the labile region of a homo
neous fluid and calculated by the equation of state of Me
et al. @32#.

The results of calculation of coexisting densities in a tw
phase model were included in the initial array with an e
larged weight with respect to the data enumerated above
given values ofr l* , rg* , T* it was necessary to fulfill the
conditions of mechanicalp* (r l* ,T* )5p* (rg* ,T* ) and
chemicalm* (r l* ,T* )5m* (rg* ,T* ) equlibria. The equilib-
rium pressure in this case was not fixed. Data on the den
and pressure on a spinodal approximated from the result
our computer experiment were imparted a weight of 8.

The equation of state is written in the form of pressu
expansion in density and temperature

FIG. 7. IsothermT* 50.7 by the equations of state from th
papers: 1, Ref.@27#; 2, Ref. @28#; 3, Ref. @29#; 4, Ref. @32#; 5, this
paper@Eq. ~23!#. Data of molecular-dynamic calculations: 6, Re
@27#; 7, our data.
1-7
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p* 5r* T* F11S 2p

3 DBr* 1S 2p

3 D 2

Cr* 2

1(
i 53

7

(
j 50

6

bi j

r* i

~T* ! j /2G . ~23!

Here the first three terms are a virial equation of state
are included in Eq.~23! for correct description of the ga
phase of a LJ fluid. The secondB and the thirdC virial
coefficients have been calculated by the following formul

B52
3

4pE h0~r 12!drW12, ~24!

C52
3

4p2E E h0~r 12!h0~r 23!h0~r 31!drW12drW23

5212E
0

`

rh0~r !drE
0

r

r 8h0~r 8!dr8

3@F~r 1r 8!2F~r 2r 8!#, ~25!

where

F~r !5E
0

r

h0~r 8!r 8dr8,

h0~r !5exp@2f~r !/kBT#21, ~26!

h0(r ) is the limit of the pair correlation function atr→0.
The results of calculatingB and C in the temperature

range 0.7<T* <35 have been approximated by the expr
sions

B5(
i 50

6

bi~T* !2 i /2, ~27!

C5(
i 50

4

ci~T* !2 i /21c5@c62~T* !21/2#29, ~28!

where b050.27165, b152.8813, b2529.9257, b3
511.9895, b45212.8825, b557.0894, b6521.9618, c0
50.11035, c150.9249, c251.0342, c3525.6725, c4
57.2901, c552137.2732, c652.5155. The absolute ap
proximation error of the second virial coefficient does n
exceed 0.0002 and third one does not exceed 0.004.

The coefficientsbi j of Eq. ~23! have been determined b
the least-squares fit. By the method of regressive analysis
number of coefficientsbi j in the equation has been reduc
to 25 without any essential decrease in the accuracy of
scription of the initial array ofp,r,T data. The coefficients
of the equation of state are given in Table I.

The mean-square deviation inp* of values obtained in
computer experiments from those calculated by Eq.~23! is
0.0123. The values of the critical parameters are as follo
Tc* 51.3084,rc* 50.2961,pc* 50.1262. The area of validity
04160
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of the equation of state is limited in pressure by the value
p* 50.5, in temperature by the range ofT* 50.7–35.

D. Direct correlation function of a homogeneous fluid

The determining relationship for the direct correlatio
function of a homogeneous system is the Ornstein-Zern
equation@2#, which establishes relation between the functi
c(r ) and the radial distribution functiong(r )

c~r !5h~r !2rE h~r 8!c~ urW2rW8u!drW8,

h~r !5g~r !21. ~29!

In physics of liquid state for calculating the radial distr
bution function use is made of the thermodynamic pertur
tion theory@36#, and also of approximate integral equation
such as the equations of Percus-Yevick~PY! and hypernetted
chain approximation~HNC! @37#. The latter follow from the
Ornstein-Zernike equation~29! if it is supplemented with
approximation relations, which relate the direct correlati
function and the radial distribution function:

c~r !5$12exp@f~r !/kBT#%g~r !, PY, ~30!

c~r !512g~r !2 ln@g~r !#2f~r !/kBT, HNC. ~31!

In the region of liquid-gas phase transition the PY a
HNC equations have a region of absence of physical s
tions. In the general case the boundary of this region d
not coincide with the spinodal line@38#. Thus, the method of
integral equations does not make it possible to determine
influence parameter in the whole density range restricted
the coexisting densities.

In the computer experiments the radial distribution fun
tion was calculated according to its definition by the formu

g~r !5
V

4pr 2N2M
(

i

M

(
j

N
Dni

( j )~r !

Dr
, ~32!

whereDni
( j )(r ) is the number of particles in a spherical lay

Dr thick at a distancer from the j th particle wheni th cal-
culatingg(r ), M is the number of calculations ofg(r ) in the
process of integrating the equations of motion.

TABLE I. Exponents and coefficients of Eq.~23!.

j i b i j j i b i j j i b i j

1 4 212089.7851 1 5 222852.7092 1 6 29133.4122
1 7 70064.6030 2 4 78878.1269 2 5 95924.399
2 6 2229079.316 2 7 2238148.643 3 4 2202813.743
3 5 2108130.890 3 6 535705.401 3 7 306007.58
4 3 1192.26528 4 4 247912.834 4 62550260.913
4 7 2179145.690 5 3 22637.74735 5 4 2141289.814
5 5 52211.5056 5 6 267568.432 5 7 40788.401
6 3 1450.53860 6 4 29551.8082 6 5 -17802.465
6 6 252138.4220
1-8
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FIG. 8. Radial distribution functions in the gas phase atT* 51.0 in models with a cutoff radius of LJ potentialr c* 52.6 ~a! and
r c* 56.78 ~b!.
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In the density ranger* 50.001–0.18 the radial distribu
tion function was determined at distances that did not exc
10.0925s. At densitiesr* 50.44–0.9 calculations ofg(r )
were made at distances up toL/2, which corresponded to
r max* 58.3425–6.9725.

The results of calculatingg(r ) for the gas phase in mod
els with cutoff radii of the potentialr c1* 52.6 andr c2* 56.78
are given in Fig. 8. In the region of stable and homogene
metastable states these data are in good agreement with
other. An increase in the density of the gas phase resul
increasing height of the first peak ofg(r ) and formation of a
second peak. During the decay of a homogeneous metas
state in a model withr c* 56.78 the radial distribution func
tion of the resulting microheterogeneous structure take
form qualitatively different from a homogeneous syste
@Fig. 8~b!, dotted lines#: the height of the peaks ofg(r ) in-
creases considerably, and their number grows, which po
to the appearance in the model of domains with an increa
particle density. The presence in the system of molec
aggregates with a distinctly different density is also indica
by the fact that oscillation in the radial distribution functio
takes place not at the leverg(r )51, but at higher levers.

By making Fourier transforms of both parts of Eq.~29!
and using the theorem of the convolution we have

c~q!5
h~q!

11rh~q!
, ~33!

where the Fourier imagew(q) of a spherically symmetric
function w(r ) is
04160
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w~q!54pE
0

`

r 2w~r !
sin~qr !

qr
dr, ~34!

and the Fourier preimage

w~r !5
1

2pE0

`

q2w~q!
sin~qr !

qr
dq. ~35!

In calculations ofh(q) and c(q) by formulas ~34! and
~35! integration with respect tor * was carried out from 0.1
to 10.0925 or to half the box rib and integration with respe
to q* was carried out from 0 to 80. The integration step
the space coordinateDr * 50.005, by the wave numbe
Dq* 50.001.

IV. COMPARISON OF THE THEORY WITH DATA OF
COMPUTER SIMULATION

A. Temperature dependence of the influence parameter

In the simplest version of the van der Waals theory it
assumed that the influence parameter does not depen
thermodynamic state variables, or is only a function of t
temperature. Let us consider how in this case the the
agree with the results of computer simulation of a flat liqu
vapor interface. If the influence parameterk does not depend
on the density, its value may be calculated from Eq.~12! by
molecular-dynamic data on the surface tension or from
~10! by data on the effective thickness of the interface. Let
define the effective thickness of the interfaceL10

90 as the dis-
tance over which the density changes from the value ofr10
1-9
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5rg10.1Dr to r905rg10.9Dr, whereDr5r l2rg . In the
van der Waals square-gradient theory

L10
905E

r10

r90F k

v~r!2vs
G1/2

dr. ~36!

The results of calculating the influence parameter by E
~36! and ~12! are shown in Fig. 9 with solid lines. At low
temperatures the data of these two approaches differ by 4
As the critical point is approached, the differences descre
and atT* .1.1 the values ofk agree within the error of thei
determination.

If the influence parameter has been calculated through
effective thickness of an interface, the van der Waals squ
gradient theory underestimates the surface tension in the
gion of low temperatures, and in calculations ofk through
the surface tension the effective thickness of the interf
proves to be overestimated. At a temperatureT* 50.7 the
discrepancies of the data onL10

90 and g are approximately
20%. Thus, the initial equation of the square-gradient the
~7!, which does not take into account the density depende
of the influence parameter, makes it impossible within
error of the data of computer experiment to describe
whole complex of properties of a liquid-vapor interface
the whole temperature range from the triple to the criti
point. Let us examine how considerable the effect of
density dependence ofk may prove to be.

B. Density dependence of the influence parameter

According to statistical determination~4!, the influence
parameterk in the van der Waals gradient expansion~3! is

FIG. 9. Influence parameter as a temperature function: 1,
square-gradient approximation, Eq.~7!; 2, with allowance for the
higher terms, Eq.~64!; dark dots show calculation by data on th
surface tension; light dots, calculation by data on the effective
terfacial thickness.
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proportional to the second moment of the direct correlat
function. Thus, the density dependence ofk is a direct con-
sequence of the dependencec(r ;r). Expression~4! can be
rewritten through the pair-correlation function. By integra
ing Eq. ~29! with respect todrW, and also the result of multi-
plication of Eq.~29! by r 2, and combining the obtained ex
pressions we have

E c~r !r 2drW5

E h~r !r 2drW

F11rE h~r !drW G2 . ~37!

The integrals in Eqs.~4! and~37! prove to be very sensi
tive to long-range parts of correlation functions. As the p
correlation functionh(r ) has a longer range of action tha
the direct correlation functionc(r ), and its asymptotic be-
havior far from the critical point is less determined, Relati
~4! has some advantages over Eq.~37! in calculatingk, at
least at high fluid densities.

We have calculatedc(r ) by data onh(r ) using Fourier
transforms~33!–~35! of Eq. ~29!. Since the integrals of Eqs
~34! and~35! were determined on the finite intervals ofq and
r, the obtained values ofc(r ) had a considerable error withi
the limits r→0 and r→`. At distancesr .r max, where
r max510.0925s for gas andL/2 for liquid, we approximated
the functionc(r ) by expression~5!. In this case the correc
tion Dk to the influence parameter was calculated by
following formula:

Dk5
4p

3

1

r max*
. ~38!

Figure 10 shows the result of calculating the influen
parameter in a model with a cutoff radius of the LJ poten
r c* 52.6 at three isotherms. Althrough the value ofk may

a

-

FIG. 10. Influence parameter as a density function at isother
T* 50.7 for 1, 1.0 for 2, 1.15 for 3.
1-10
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have a considerable error~up to 12%!, we are sure that they
reproduce the temperature and the density dependence o
influence parameter given by formula~4! qualitatively cor-
rectly.

The density dependence ofk was earlier determined in
the framework of a modified van der Waals model by McC
et al. @39# and Cornelisseet al. @38# by data on the direc
correlation function obtained by numerical integration of t
Ornstein-Zernike equation in PY and HNC approximatio
We calculatedk(r,T) by the radial distribution function o
computer experiment using relations~30!, ~31! ~Fig. 11!. The
results of such calculation differ from the results of dire
simulation first of all by an abrupt increase of the parame
k on the side of the gas phase with deeper penetration
the metastable region. It is most pronounced for HNC
proximation~31!. This result is in good qualitative and qua
titative agreement with the paper by Cornelisseet al. @38#.
The tendency for the divergence ofk(r) in the Ref. @38#
manifested itself as the boundary of the region of absenc
solutions to integral equations was approached. Correla
functions were determined up to distancesr max* 551.175, and
as the authors@38# noted, an increase in this distance did n
influence the character of the dependencek(r) on the side of
the gas phase.

On the side of the liquid phase approximations of E
~30! and ~31! with the use in them of the results o
molecular-dynamics calculations ofg(r ) give qualitatively

FIG. 11. Influence parameter calculated with the use of
~light dots! and HNC~dark dots! approximations at isotherms: 1 fo
T* 50.7, 2 for 1.0, 3 for 1.15. The figure inset shows the dep
dencek* (r* ) at low densities. Marked light dots, calculation b
data of molecular dynamics onc(r ); solid line, calculation by Eq.
~39! when k (2) is determined with allowance for all the cluste
integrals; dotted line, the same whenk (2) is determined in HNC
approximation, dash-dotted line, the same whenk (2) is determined
in PY approximation.
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different density dependence of the influence parameter.
an approximation of Eq.~30! k(r) is a decreasing densit
function, which agrees with the results of direct molecul
dynamic calculation~Fig. 10! and the numerical solution o
Eq. ~29! @38#, in an approximation of Eq.~31! it is an in-
creasing density function. The latter also agrees qualitativ
with the results of the Ref.@38#, but there the tendency fo
the increase ofk with increasing density is less pronounce
In a rigorous solution of Eq.~29! in an approximation of Eq.
~31! the parameterk increases abruptly at the approach
the boundary of the region of absence of solutions for
HNC equation, which is not observed in our calculation
The latter may be connected with the small value ofr max to
which the functiong(r ) was calculated. The authors@38#
point out that the tendency for the divergence ofk for the
liquid phase in a HNC approximation manifests itself if th
cutoff radiusr max* of the pair correlation function is equal t
51.175 and disappears with a descrease inr max* to 6.375.
Approximations of Eqs.~30! and ~31! for the liquid phase
give a much weaker temperature dependence ofk than for
the gas phase, and for Eq.~31! it is practically absent.

In the range of low densities the influence parameter
the pair correlation function may be presented in the form
power series of density

k~r!5k (0)1k (1)r1k (2)r21•••, ~39!

h~r ;r!5h(0)~r !1h(1)~r !r1h(2)~r !r21•••. ~40!

For the expansion coefficients ofk(r) from Eqs. ~4! and
~37! we have

k (0)~r!5~kBT/12!H02, ~41!

k (1)5~kBT/12!~H1222H00H02!, ~42!

k (2)5~kBT/12!~H2222H12H0013H02H00
2 22H02H10!,

~43!

where

H005E h0~r !drW, H025E h0~r !r 2drW,

H105E h1~r !drW, H125E h1~r !r 2drW,

H205E h2~r !drW, H225E h2~r !r 2drW. ~44!

The expansion coefficients of the pair correlation functi
h(r ) are expressed in terms of cluster integrals@40#. The first
term of a series~40! is given by formula~26! and determines
the value and the temperature dependence of the influe
parameter atr→0.

The integrals of Eq.~44! were calculated with a step
Dr * 50.01 to r m* 540. The contribution of the ranger *
.r m* was determined analytically with expansion into a s
ries of the exp@2f(r)/kBT# and allowance for the first non
zero term. The coefficientk (0) is a weakly decreasing tem

Y

-
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perature function. In the investigated temperature rangeT*
50.7–1.15 it changes by less than 15%. The coefficientk (1)

also decreases with increasing temperature, but much m
abruptly thank (0). At T.1.2 it takes negative values. A d
rect calculation of the cluster integrals determining the co
ficient h2 is a complicated problem. The poor convergence
some of the cluster integrals atr→` gives rise to a grea
error in calculations ofk (2). Three of the four cluster inte
grals included in the coefficienth2 make up the HNC ap-
proximation. The fourth cluster integral, which is not dete
mined by PY and HNC approximations, converges qu
rapidly and can be calculated with a good accuracy. T
makes it possible to determine the deviation of the value
the coefficientk (2) from the coefficientkHNC

(2) obtained in
HNC approximation. The coefficientk (2), as well ask (0) and
k (1) is a decreasing temperature function. The change of
sign of k (2) from positive to negative takes place in the r
gion of the critical temperature.

The inset of Fig. 11 presents the dependencek(r) at iso-
thermsT* 50.7 and 1.15 in the region of low densities. A
increase in the density is accompanied by an increase in
influence parameter, a rise of the temperature decreasin
rate of the increase ofk. The results of Eq.~39! are in good
agreement both with the data of computer simulation a
with the data of PY and HNC approximations, which beco
accurate in the limitr→0.

To use the obtained data fork(r) in the van der Waals
theory it is necessary to extrapolate them through the den
range where the influence parameter has not been d
mined. We have no physical models that could give subs
tiation for such extrapolation. Therefore, we have appro
mated the dependencek(r) by polynomials with minimal
exponents. The results of such approximation are show
Fig. 10 with solid lines. From a comparison of Figs. 9 and
it follows that one cannot expect improvement in the desc
tion of a flat interface by the van der Waals square-grad
theory using in it expression~4! for the influence paramete
as the value ofk in this case proves to be 30–40 % high
than it is required to reproduce data for the surface tens
and the effective interfacial thickness. When the data
k(r) presented in Fig. 10 are substituted into expressi
~12!, ~36!, the value of the surface tension proves to be ov
estimated by ;16%, and the effective thickness b
;25% (T* 51.0). With decreasing temperature the discre
ancies increase and they decrease as the critical point is
proached.

An expression for the Helmholtz free energy of the ki
~3! is postulated in the classical theory of critical phenome
@41#. This theory is formulated in a mean-field approxim
tion, the square-gradient term takes into account the pres
of long-wave fluctuations. The coefficient at the square of
density gradientk, an absolute analog of the influence p
rameter in the van der Waals theory, is connected with
correlation radiusj and the isothermal compressibilityKT
5(]r/]p)T /r by the following relation:

j25kr2KT . ~45!

Thomas and Schmidt@42# expressed the correlation radiu
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through a certain characteristic lengthl, which in a first ap-
proximation has to be a function only of the temperature

j25
l 2

10
~rkBTKT21!. ~46!

Substitution of Eq.~46! into Eq. ~45! gives

k~r,T!5
l 2

10S kBT

r
2

1

r2KT
D . ~47!

The temperature dependencel (T) may be determined
from data on the interfacial effective thickness or the surfa
tension as it was done in Sec. IV A. The parameterk in this
case is a decreasing density function. At temperaturesT*
<1.15 it becomes negative in the range of densities co
sponding to liquid-vapor equilibrium existence. Thus, re
tion ~47! cannot be used in the van der Waals theory at l
temperatures, as is assumed in Ref.@38#. Its action is limited
only by the nearest vicinity of the critical point.

The results obtained on the description of properties o
liquid-vapor interface by the van der Waals square-grad
theory with allowance for the density dependence of the
fluence parameter cannot be corrected by choosing any o
approximation dependence for the functionk(r), different
from that presented in Fig. 10. At high temperature Eq.~3!
gives good results even without allowance for the dens
dependence ofk. Therefore, the question arises as to t
validity of its use at low temperatures.

C. Allowance for terms of a higher order than „¹r…2 in the
Helmholtz free energy

At T* ,1.0, the effective thickness of an interface
smaller than 4–5 molecular diameters, and the question
retention in the expansion~2! only of lower spatial deriva-
tives becomes debatable. According to Eq.~2! the contribu-
tion to the Helmholtz free energy of an inhomogeneous s
tem of terms following (¹r)2 may be written as follows:

DF2$r~rW !%5E @k3~¹r!41k4~¹r!2Dr1k5~Dr!2

1k6~¹r!~¹Dr!1k7~DDr!#drW. ~48!

Applying the divergence theorem@43# and neglecting the
surface contributions of the system boundaries we have

E u~r!~DDr!drW52E S du~r!

dr D ~¹r!~¹Dr!drW,

~49!

E u~r!~¹r!2~Dr!drW52
1

3E S du~r!

dr D ~¹r!4drW,

~50!
1-12
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E u~r!~Dr!2drW52E S du~r!

dr D ~¹r!2~Dr!drW

1E u~r!~¹r!~¹Dr!drW. ~51!

Relations~49!–~51! make it possible to eliminate from
Eq. ~48! three of its five terms. By retaining in Eq.~48! the
terms proportional to (¹r)4 and (¹r)2 for an excess grand
potential of a two-phase system with a flat interfaceVs
5V2V l2Vg with allowance for Eq.~7! we obtain

Vs$r~z!%5AE
2`

` FDv~r!1kS dr

dzD
2

1lS dr

dzD
4

1bS d2r

dz2 D 2Gdz, ~52!

where

l5k32
1

3 S ]k4

]r
1

]2k6

]r2
2

]3k7

]r3 D , ~53!

b5k51k62
]k7

]r
. ~54!

Let us evaluate the effects of thel(dr/dz)4 and
b(d2r/dz2)2 terms to the properties of a flat interface a
suming that the influence parametersl andb do not depend
on the density. If we assume thatl50 minimization of the
functional in Eq.~52! will lead to the Euler equation

2k
d2r

dz2
22b

d4r

dz4
5

]v

]r
5m2m0 . ~55!

Within the limits of Eq.~8! we may write

2k
d2x

dz2
22b

d4x

dz4
5xS ]m

]r D
r5r l ,g

, ~56!

where x5r2r l ,g . For functions of the kind x(z)
5x0exp(2az) we obtain

a25
k

2b H 12F12
2b

k2 S ]m

]r D
r l ,g

G 1/2J . ~57!

The absence of oscillations on the density profile me
the reality ofa. The conditions of reality ofa imposes limi-
tation on the maximum admissible value of the coefficientb,
namely,

0<b<
k2

2 S ]m

]r D
r5r l ,g

21

. ~58!
04160
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The derivative (]m/]r)r5r l ,g
has a large value on the sid

of the gas phase, therefore, the upper boundary of the c
ficient b,

bmax5
k2

2 S ]m

]r D
r5rg

21

. ~59!

In an approximationl50 the surface tension is dete
mined by the expression

g5
Vs

A
5E FDv1kS dr

dzD
2

1bS d2r

dz2 D 2Gdz. ~60!

If we determinek through the interfacial effective thick
ness~36! and assumeb5bmax, the contribution to the sur-
face tension of the last component~60! does not exceed
0.15% in the vicinity of the triple point and 1.5% at th
highest temperature calculated here.

The situation changes qualitatively with allowance in E
~52! for the l(dr/dz)4 term. In this case there are no lim
tations on the value ofl connected with the correctness
the behavior ofr(z) within the limits of z→6`. At b50
minimization of the functional in Eq.~52! gives the Euler
equation

2k
d2r

dz2
112l

d2r

dz2 S dr

dzD
2

5m2m0 . ~61!

Multiplying by dr/dz and integrating gives

kS dr

dzD
2

13lS dr

dzD
4

5Dv. ~62!

Now, turning again to the data of computer simulation,
have two unknownsk, l and two equation for these un
knowns, Eqs.~12! and ~36!, which seemingly makes it pos
sible to determinek and l in a coordinated manner. How
ever, as is shown by a numerical analysis of Eqs.~52!, ~62!,
~12!, ~36!, in such a formulation the problem has no solutio
If k has been determined through the interfacial effect
thickness on condition thatl50, the values of the surfac
tension obtained in this case prove to be lower than
molecular-dynamic calculation. AtL10

905const the surface
tension will increase with decreasingl ~i.e., l,0) and in-
creasingk. However at a sufficiently high, to the modulu
value ofl there appears a region of absence of solutions
Eq. ~62!, i.e., there appear discontinuities on the density p
files. The latter means that for a correct description of
interfacial properties in the region of low temperatures it
also necessary to maintain in the expansion of~2! the terms
of the third order of infinitesimality.

Applying the divergence theorem and the neglect of
surface contribution of the system boundaries make it p
sible to exclude in the expressionF$r(r )% seven terms of the
third order of infinitesimality out of eleven and write for th
excess grand potential of a two-phase system
1-13
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Vs$r~z!%5AE
2`

1`FDv~r!1kS dr

dzD
2

1lS dr

dzD
4

1bS d2r

dz2 D 2

1f0S dr

dzD
6

1f1S dr

dzD
2S d2r

dz2 D 2

1f2S d2r

dz2 D 3

1f3S d3r

dz3 D 2Gdz. ~63!

As has been shown above, theb(d2r/dz2)2 term gives a
small contribution to the value ofVs and in a first approxi-
mation may be omitted. Thef1(dr/dz)2(d2r/dz2)2,
f2(d2r/dz2)3, andf3(d3r/dz3)2 terms in the general cas
are not small as compared with other items of express
~63!. Nevertheless, for further analysis we choose an
proximation that postulates the following kind of the exce
grand potential

Vs$r~z!%5AE
2`

1`FDv~r!1kS dr

dzD
2

1lS dr

dzD
4

1f0S dr

dzD
6Gdz. ~64!

The Euler equation in this case can be expressed,

kS dr

dzD
2

13lS dr

dzD
4

15f0S dr

dzD
6

5Dv. ~65!

A system will be stable with respect to the appearance
density inhomogeneity if the sum of the last three items
the integrand of Eq.~64! is a monotonically increasing func
tion of (dr/dz)2. For weak inhomogeneities this conditio
leads to the requirement ofk.0. At high density gradients i
will suffice to requirel.0, f0.0. However, the condition
of stability will also be fulfilled at negative value ofl if

f0.
l2

3k
. ~66!

More rigorous requirements for the value of the parame
f0 at l,0 are imposed by Eq.~65!. For ther(z) to be a
continuous function the dependence ofDv on (dr/dz)2 has
to be monotonic. The latter is reduced to the requiremen

f0.fmin5
3l2

5k
. ~67!

In fulfilling the condition~67! Eq. ~65! has a unique solution
with respect to (dr/dz)2.

Integration of Eq.~65! gives a density profiler(z), by
which the surface tension is calculated and the effec
thickness of the interfaceL10

90 is determined. When such ca
culations were performed, at the first stage the coefficientf0
was taken to be equal to its minimum value~67!. By the
results of computer experiments ong and L10

90 for T*
04160
n
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s

f
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e

50.7234 the following values were obtained:k* 52.857 and
l* 521.241k* . Then, taking the ratiosl* /k* andf0* /k*
as being independent of temperature, we determined at o
temperatures the values ofkg* by data ong and the valueskL

by data onL10
90. The increase of parameterf0 results in re-

duction of a mean-square deviation of valueskg* from kL* .
The value off051.1fmin is optimum~Fig. 9!. In this case
the temperature dependence ofk* in range 0.7,T* ,1.25
may be presented by the following expression:

k* 54.28223.6/T* 11.9/T* 2, ~68!

with l* 521.499k* .
With such a choice of parameters for Eq.~64! it describes

data on the surface tension and the interfacial effective th
ness within the statistical error of computer experiment in
whole investigated temperature range.

Figure 12 presents deviations of the calculated den
profiles from hyperbolic tangent

r~z!5
r l1rg

2
2

r l2rg

2
tanhS z

L10
90

ln~9!D . ~69!

Equation ~64! makes it possible to achieve satisfacto
agreement with the results of computer experiment both
high and at low temperatures. Equation~7! with an influence
parameter that is only a function of temperature agrees w
the results of computer simulation only atT* .1.0.

V. DISCUSSIONS AND CONCLUSIONS

The basic equation of the van der Waals square-grad
theory, which describes a flat interface~7!, contains two de-
termining parameters, the Helmholtz free energy den
f 0@r(z),T# of a hypothetical homogeneous medium and
influence parameter at the square of the density gradien

We have determinedf 0(r,T) by approximating the results
of molecular-dynamic calculations of thep,r,T properties of
a LJ fluid by an equation of state whose form is in agreem
with the mean-field theory. Equations of such a type are a
used for describing metastable states in actual systems@44#.

The influence parameter is determined by the second
ment of the direct correlation function, which for homog
neous states of a LJ fluid has been obtained by molecu
dynamic data on the radial distribution function. Althoug
the second momentc(r ) in computer experiment is deter
mined with a considerable error, we are sure that the te
perature and the density dependences ofk obtained in this
case are correct. The latter is supported by good agreem
between the results of rigorous analytic calculations ofk at a
low density and the results of computer experiment, and a
between the results of computer experiment and numer
solutions of PY and HNC integral equations at high den
ties. Both forf 0(r,T) and fork(r,T) there is a density range
where these functions cannot be determined by comp
experiments. For lack of a model that would make it possi
to interpolate the values of the functionk(r,T) through the
1-14
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FIG. 12. Deviations of the density profiles calculated by different models from the hyperbolic tangent~69!. Dark and light dots shows the
results of calculation for two interface of a molecular-dynamic model; dotted line, calculation by Eq.~10! when the influence parameter
determined from data on the surface tension; dashed line, the same whenk is determined from data on the effective interfacial thickne
solid line, calculation by Eq.~65! with the parametersk, b, f0 presented in the text; a,T* 50.8268; b,T* 50.9975.
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uncertainty range we used a simple polynomial approxim
tion. The surface tension and the interfacial effective thi
ness calculated in this case by the van der Waals squ
gradient theory proved to be considerably overestimated
compared with the results of computer experiment. In
region of the triple point deviations were equal to 30%
the surface tension and;35% for the effective thickness. A
we approach the critical point, the discrepancies decre
but even at the highest calculated temperature they ex
the error of the computer simulation data. We connect suc
discrepancy not with some fundamental drawbacks of
van der Waals theory, i.e., Eq.~3!, but with formula~4! for
the influence parameter.

In the original van der Waals theory@1# the influence pa-
rameterk is density independent. In this case it is quite ea
to obtain its value from Eqs.~12! or ~36! by the results of
molecular-dynamic calculations ofg and L10

90 @on condition
that the type of the functionf 0(r,T) is determined#. This
approach gives compatible results onk at T* .1.0. Such a
goodness of fit is not observed in the region of the tri
point. The significant point of the van der Waals theory w
a parameterk depending only on temperature is the fact th
at high temperatures it reproduces qualitatively and quan
tively correctly the subtle structure of the density profile
vealed in computer experiment.

Taking into account the terms of the second order of
finitesimality in the expansion of the Helmholtz free ener
density ~2! with density-independent influence paramet
does not make it possible to improve the description of pr
erties of a flat interface. With allowance for the terms of t
third order of infinitesimality there appear a large number
unrestricted variables, and the problem of describing pro
ties of a flat interface in the framework of an extended v
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der Waals theory has no longer an unambiguous solution.
have found such a solution in the framework of a mod
representation of the Helmholtz free energy of an inhomo
neous fluid~64!, which contains only different powers o
(¹r). It has been assumed that the influence parameterk at
(¹r)2 is a temperature function, whereas the ratios of infl
ence parameters at (¹r)4 and (¹r)6 to k do not depend on
thermodynamic state variables.

In this case agreement has been achieved between the
der Waals theory and the results of computer experiment
all the properties of a flat interface and in the whole tempe
ture range from the triple to the critical point.

We have seen~Sec. I! that the van der Waals theory can b
substantiated only on condition that certain limitations a
imposed on fluctuations. A simple, but natural means of d
cussing fluctuations at an interface consists in the assump
@45# that there is a spectrum of capillary waves superpo
on the internal ~without fluctuations! density profile.
Capillary-wave fluctuations lead to a transverse radius
correlation and an interfacial thickness diverging in the lim
of a vanishing gravity field@45#. As among the fluctuations
that are fully suppressed in a mean-field approximation th
prove to be capillary waves too, the question arises about
allowance for the fluctuation component in the van der Wa
theory. Here there are different viewpoints@46–48#. Accord-
ing to Evans@48#, capillary-wave fluctuations are containe
in the van der Waals theory, thus, the density profiles and
surface tension obtained in the framework of this theory
not require introduction of capillary-wave corrections f
fluctuations of an interface. Attempts to distinguish t
capillary-wave contribution forL10

90 and g in molecular-
dynamic experiments@49# have not given an unambiguou
result as yet.
1-15
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